Question
A data analyst at a bank is tasked with developing a
credit scoring model to assess loan applicants' eligibility. Which of the following statistical methods would be most suitable for predicting the likelihood of default?Solution
Logistic regression is particularly suited for predicting binary outcomes, such as whether a borrower will default (yes/no). In credit scoring, the objective is to assess an applicantтАЩs risk level, which aligns with logistic regression's ability to estimate the probability of a particular outcome within a range (0 to 1). By focusing on the likelihood of default, logistic regression helps to transform continuous variables into a predictive model that identifies high-risk and low-risk borrowers. This model considers various financial and demographic indicators, weighting each variableтАЩs impact on the default risk. Logistic regression is also robust against outliers, making it highly effective in finance, where data can be volatile. The other options are incorrect because: тАв Linear Regression assumes a continuous outcome variable and is less suited for binary prediction. тАв Time Series Analysis is used for forecasting over time, not for categorical risk predictions. тАв K-means Clustering groups data into clusters, which does not directly predict probability. тАв Decision Tree Regression is typically used for continuous outcomes and lacks logistic regressionтАЩs probability estimation capability.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╣рд┐рдВрджреА рд╡рд╛рдХреНрдп рдХрд╛ рдЕрдВрдЧреНрд░реЗрдЬреА рдореЗрдВ рдЕрдиреБрд╡рд╛рдж рдХрд░рд┐рдпреЗ-я┐╜...
рджрд┐рдП рдЧрдП рд╡рд┐рдХрд▓реНрдкреЛрдВ рдореЗрдВ рд╕реЗ рд╡рд╣ рд╡рд╛рдХреНрдп рдЪреБрдиреЗ рдЬреЛ рдкреНрд░рд╢реНрди рдореЗрдВ рджрд┐рдП я┐╜...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ Haggling of price ┬а рд╢рдмреНрдж рдХрд╛ рд╡рд┐рддреНрддреАрдп рд╢рдмреНрджрд╛рд╡рд▓реА рдореЗ...
The discharged petition has been kept in abeyance рдореЗрдВ discharged petition рдХрд╛ рдЕрд░реНрде рд╣реИ -
рджрд┐рдП рдЧрдП рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдореЗрдВ рдПрдХ рд╣рд┐рдВрджреА рдХрд╛ рд╡рд╛рдХреНрдп рджрд┐рдпрд╛ рдЧрдпрд╛ я┐╜...
рджрд┐рдП рдЧрдП рдкреНрд░рддреНрдпреЗрдХ рдкреНрд░рд╢реНрди рдореЗрдВ рдПрдХ рд╣рд┐рдВрджреА рдХрд╛ рд╡рд╛рдХреНрдп рджрд┐рдпрд╛ рдЧрдпрд╛ я┐╜...
рджрд┐рдП рдЧрдП рд╡рд╛рдХреНрдп рдХрд╛ рд╕рд╣реА рдЕрдиреБрд╡рд╛рдж рдЪреБрдирд┐рдпреЗред
рд╣рдо рдЛрдгрд┐рдпреЛрдВ рд╕реЗ рдЬрд┐рддрдирд╛ рдЬя┐╜...
┬ардирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ Pursuit ┬а рд╢рдмреНрдж рдХрд╛ рдЗрдирдореЗ рд╕реЗ рдХреНрдпрд╛ рдЕрд░реНрде рдирд╣реАрдВ рд╣реЛрдЧ...
Reimbursement рдХреЗ рд▓рд┐рдП рд▓рд┐рдП рд╕рд╣реА рдкрд╛рд░рд┐рднрд╛рд╖рд┐рдХ рд╢рдмреНрдж рд╣реИ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рдХреМрди рд╕рд╛ тАШstrategy рд╢рдмреНрдж рдХрд╛ рд╢рдмреНрджрд╛рд╡рд▓реА рдореЗрдВ рд╕рд╣реА рд╣рд┐рдВрджреА я┐╜...