Question
Which of the following methods is most appropriate for
forecasting future values in time series data with a consistent trend and seasonality?Solution
Exponential smoothing is one of the most effective forecasting methods when dealing with time series data that exhibits both trend and seasonality. It assigns exponentially decreasing weights to past observations, which means that more recent data points have a greater influence on the forecast. The method adapts well to data with trends and seasonal variations because it accounts for these patterns in its calculation. Variants such as Holt-Winters exponential smoothing are used specifically when the data shows seasonality and trend components, making it suitable for time series forecasting where such features are evident. Why Other Options Are Incorrect: тАв A: Moving averages are useful for smoothing time series data but do not explicitly handle trends and seasonality as well as exponential smoothing. тАв B: ARIMA (AutoRegressive Integrated Moving Average) is a powerful method but is more complex and suitable for non-seasonal data or when seasonality is handled separately through seasonal ARIMA (SARIMA). тАв D: Random Forest is a machine learning model and is not typically used for forecasting time series data that shows clear seasonality and trend. тАв E: Linear regression is more suitable for predicting values based on independent variables, not for time series forecasting where autocorrelation and seasonality are crucial.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╢рдмреНрдж рдХрд╛ рдкреИрд░рд╛рдЧреНрд░рд╛рдл рдХреЗ рдЕрдиреБрд╕рд╛рд░ рджрдХреНрд╖рддрд╛ рдХрд╛┬а рдЙрдЪрд┐...
рдЗрдирдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╢рдмреНрдж рддрддреНрд╕рдо рдирд╣реАрдВ рд╣реИ ?
рдирд┐рдореНрди рдореЗрдВ рд╕реЗ рдХреМрди рд╕рддреНрдп рд╣реИ?
рд░рд╛рдХреЗрд╢ рдХрд╛ рд╕рдиреНрдзрд┐ рд╡рд┐рдЪреНрдЫреЗрдж рд╣реЛрдЧрд╛ :
' рд╖рдбрд╛рдирди ' рдХрд╛ рд╕рд╣реА рд╕рдВрдзрд┐-рд╡рд┐рдЪреНрдЫреЗрдж рдХреНрдпрд╛ рд╣реЛрдЧрд╛ ?
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╢рдмреНрджреЛрдВ рдореЗрдВ ┬а 'рдмреНрд░рд╣реНрдорд╛' рдХреЗ рддреАрди рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рд╡рд┐я┐╜...
рдЙрд╕рдХреА (1) рдкрд╕рдВрджреАрджрд╛ (2) рдЦреЛ рдЧрдпреА (3) рдкреБрд╕реНрддрдХ (4) рд╡рд╛рдХреНрдп рд╕рдВрд░рдЪрдирд╛ рдХрд╛ рд╕рд╣реА рдХреНрд░рдо ...
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рд╕рд╣реА рд╡рд╛рдХреНрдп рдХреМрди-рд╕рд╛ рд╣реИ?
рднрд╛рд░рдд рдХреЗ рдХрд┐рд╕┬а рдкреНрд░рд╛рдВрдд рдореЗрдВ рдХреЛрдВрдХрдгреА рднрд╛рд╖рд╛ рдмреЛрд▓реА рдЬрд╛рддреА рд╣реИ :
'рд╢рд┐рд▓рд╛рд▓реЗрдЦ' рдореЗрдВ рд╕рдорд╛рд╕ рдмрддрд╛рдЗрдП :