Question
Which of the following methods is used to ensure
stationarity in time series data, a critical prerequisite for ARIMA modeling?Solution
Differencing is a common technique used to ensure stationarity in time series data. A stationary time series has constant mean, variance, and autocovariance over time. Differencing involves subtracting the previous observation from the current one, which helps remove trends and seasonality from the data. This technique makes the data more stationary and thus suitable for time series modeling techniques like ARIMA, which assume that the underlying data is stationary. The first difference of a time series typically removes linear trends, and higher-order differencing can address more complex patterns. Why Other Options Are Incorrect: тАв A: Removing outliers is a data cleaning technique but does not directly address the stationarity of time series data. тАв B: Normalization adjusts the scale of the data but does not make the series stationary. тАв D: Transforming data into a different distribution may be useful for other purposes but is not primarily used to achieve stationarity. тАв E: Moving averages smooth the data but do not ensure stationarity, as they do not directly remove trends or seasonality.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХрд┐рд╕ рд╢рдмреНрдж рдХреА рд╡рд░реНрддрдиреА рдЕрд╢реБрджреНрдз рд╣реИ?┬а
' рдлрд▓ ' рд╢рдмреНрдж рдХрд╛ рдЕрдиреЗрдХрд╛рд░реНрдереА рдирд╣реАрдВ рд╣реИрдВ ?
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди-рд╕рд╛ рдЕрдиреЗрдХрд╛рд░реНрдердХ рд╢рдмреНрдж рдирд╣реАрдВ рд╣реИ ?┬а
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рд╕реНрд╡рд░ рд╕рдВрдзрд┐ рд╡рд╛рд▓рд╛ рд╢рдмреНрдж рдирд╣реАрдВ рд╣реИ:┬а
' рдЬреЛ рдХрдард┐рдирддрд╛ рд╕реЗ рдФрд░ рджреЗрд░ рдореЗрдВ рдкрдЪреЗ ' рдХреЗ рд▓рд┐рдП рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХ...
рд╕реВрдЪреА-I рдХреЛ рд╕реВрдЪреА-II рд╕реЗ рд╕реБрдореЗрд▓рд┐рдд рдХреАрдЬрд┐рдП:
рдХрд┐рд╕ рдХреНрд░рдорд╛рдВрдХ рдореЗрдВ тАШрдкрд░рд┐рдорд╛рдг тАУ рдкрд░рд┐рдгрд╛рдотАЩ рд╢рдмреНрджрд░ рдпреБрдЧреНрдорд╛ рдХрд╛ рд╕рд╣реА рдЕрд░реНя┐╜...
' рд╢рд╛рдВрддрд┐ ' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рд╢рдмреНрдж рдХреНрдпрд╛ рд╣реИ ?┬а
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди рд╕рд╛ рд╢рдмреНрдж рд╕реНрддреНрд░реАрд▓рд┐рдВрдЧ рд╣реИ?
рдЗрдирдореЗрдВ рд╕реЗ рдХреМрди рд╢рдмреНрджрд╛рд▓рдВрдХрд╛рд░ рдирд╣реАрдВ рд╣реИ?