Start learning 50% faster. Sign in now
Explanation: K-means clustering is a powerful unsupervised learning algorithm for grouping customers into distinct segments based on similar purchasing behaviors. It minimizes intra-cluster variance and ensures that customers in the same cluster exhibit closely related characteristics, such as spending frequency, product preferences, or average order value. Retailers can use these clusters to personalize marketing campaigns, recommend products, and allocate resources effectively. For instance, a cluster with high-spending customers might be targeted with premium offers, while infrequent buyers might receive discounts. K-means is computationally efficient and provides actionable insights for customer segmentation. Option A: Regression analysis predicts outcomes but does not group customers into distinct segments. Option C: PCA reduces dimensionality and aids visualization but is not inherently a segmentation technique. Option D: Sentiment analysis evaluates customer opinions but is unrelated to purchasing behavior segmentation. Option E: Time series analysis identifies trends over time but does not classify customers into groups.
पशु- पांशु-पण ' का क्रमशः सही अर्थ प्रकट करने वाला शब्द ...
इनमें से किस शब्द की वर्तनी अशुद्ध है ?
संधि कितने प्रकार की होती है।
अनुचित वाक्य छाँटिए—
'परिश्रमी' किस प्रकार का विशेषण है?
संधि पूर्ण करें -
जलद का अर्थ ___________ है।
'हुताशन' पर्यायवाची है-
'पीतांबर' में कौन-सा समास है?
वर्तनी की दृष्टि से शुद्ध शब्द है -
स्वर ए - ऐ का उच्चारण स्थान कौन सा है ?