Start learning 50% faster. Sign in now
Explanation: Time series data typically has three main components: trend, seasonality, and irregular components (residuals) . The trend represents the long-term movement in data, such as a consistent increase in sales over years. Seasonality captures recurring patterns, like monthly sales peaks due to festivals. Irregular components, or residuals, represent random variations that cannot be explained by trend or seasonality. Understanding these components is vital for decomposing time series data, identifying underlying patterns, and building accurate forecasting models. Option A: Residuals are part of irregular components, but "noise" is not explicitly categorized as a separate time series component. Option C: Cyclic patterns are distinct from seasonality and are not a guaranteed component of time series. Option D: Moving averages are a forecasting method, not a fundamental component of time series. Option E: Autoregressive components belong to forecasting models like ARIMA, not core components of time series.
पशु- पांशु-पण ' का क्रमशः सही अर्थ प्रकट करने वाला शब्द ...
इनमें से किस शब्द की वर्तनी अशुद्ध है ?
संधि कितने प्रकार की होती है।
अनुचित वाक्य छाँटिए—
'परिश्रमी' किस प्रकार का विशेषण है?
संधि पूर्ण करें -
जलद का अर्थ ___________ है।
'हुताशन' पर्यायवाची है-
'पीतांबर' में कौन-सा समास है?
वर्तनी की दृष्टि से शुद्ध शब्द है -
स्वर ए - ऐ का उच्चारण स्थान कौन सा है ?