Start learning 50% faster. Sign in now
Explanation: Stationarity in time series data is a critical assumption for applying ARIMA models. ARIMA (AutoRegressive Integrated Moving Average) is designed to work with data that has constant mean, variance, and autocovariance over time. Stationary data ensures the model's stability, enabling accurate predictions and parameter estimation. If the data is not stationary, the ARIMA model's results may be unreliable. Non-stationary data can lead to misleading forecasts, as the underlying patterns are not stable. Techniques like differencing, logarithmic transformations, or the Dickey-Fuller test are employed to achieve stationarity. Option A: While ARIMA addresses autocorrelation, stationarity is needed for foundational assumptions, not just for residual issues. Option B: Stationarity helps improve model accuracy but is not the primary reason for its necessity. Option D: Decomposition is a separate analytical step and not a requirement for ARIMA. Option E: Seasonal components are addressed by SARIMA models, not basic ARIMA.
The books supplied to the sections will be in the custody of the Assistant Audit Officers in charge of the sections.
परित्याग का अंग्रेजी शब्द है -
Endowment Insurance के लिए लिए सही पारिभाषिक शब्द है
निम्नलिखित विकल्पों में से pool fund का हिंदी पर्याय होगा।...
The accomplice who is tendered pardon by a Magistrate, is not to be tried by the same Magistrate but by another Court.
शिक्षा एक ऐसा विषय है जिससे देश के सभी नागरिकों का सरोका...
निम्नलिखित में शिकायती शब्द का इनमे से क्या अर्थ नही...
निम्नलिखित विकल्पों में से Product शब्द का कौन सा पर्याय होगा...
गद्यांश के आधार पर Despite all the disruptions caused by the global pandemic का सही हिन्दी अनु...
Cash reserve ratio-