Question
Which natural language processing (NLP) technique is
best suited for understanding the contextual meaning of words in a sentence?Solution
Transformers like BERT (Bidirectional Encoder Representations from Transformers) have revolutionized NLP by capturing contextual word representations. Unlike traditional techniques, BERT processes words in both their preceding and succeeding contexts, enabling nuanced understanding. 1. Contextual Embeddings: BERT generates embeddings that vary depending on the surrounding words, addressing issues like polysemy (e.g., "bank" as a financial institution vs. a riverbank). 2. Bidirectionality: By analyzing text in both directions, BERT captures deeper linguistic patterns and relationships. 3. Pretraining and Fine-Tuning: BERT is pretrained on vast corpora and fine-tuned for specific NLP tasks, making it versatile for applications like sentiment analysis, question answering, and translation. Why Other Options Are Incorrect: тАв A) Bag of Words: Ignores word order and context, treating sentences as a collection of words. тАв B) One-Hot Encoding: Fails to capture semantic relationships between words. тАв C) Word2Vec: Generates static word embeddings, lacking context sensitivity. тАв D) TF-IDF: Focuses on word importance across documents but overlooks word order and meaning.
┬ардирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╡рд╛рдХреНрдпреЛрдВ рдХреЗ рдкреНрд░рдпреЛрдЧ ┬а рдкрд░ рд╡рд┐рдЪрд╛рд░ рдХреАрдЬрд┐рдпреЗ -
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдЕрдШреЛрд╖ рд╡рд░реНрдг рдХреМрди-рд╕рд╛ рд╣реИ ?
'рд╕реНрд╡рд╛рдЧрдд' рд╢рдмреНрдж рдореЗрдВ рдХреМрди рд╕рд╛ рдЙрдкрд╕рд░реНрдЧ рд╣реИ ?
'рдкреНрд░рддрд┐рд╖реНрдард╛рдкрд┐рдд' рдХрд╛ рд╕рдВрдзрд┐ рд╡рд┐рдЪреНрдЫреЗрдж рд╣реЛрдЧрд╛┬а
рдирд┐рдореНрдирд╛рдВрдХрд┐рдд рд╡рд┐рдХрд▓реНрдкреЛрдВ┬а рдореЗрдВ рд╢реБрджреНрдз рд╡рд░реНрддрдиреА рд╡рд╛рд▓рд╛ рд╡рд┐рдХрд▓реНрдк рдХрд╛ ...
рдХреМрди-рд╕рд╛ рд╢рдмреНрдж 'рдирд╛рдЧ' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ?
'рддреАрд╕рд░рд╛' рд╢рдмреНрдж рдореЗрдВ рд╡рд┐рд╢реЗрд╖рдг рд╣реИ
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рд╡рд╛рдХреНрдпреЛрдВ рдореЗрдВ рд╕реЗ рд╕рдореНрдмрдиреНрдз рдХрд╛рд░рдХ рд╡рд╛рд▓реЗ рд╡рд╛рдХреНрдпреЛрдВ рдХреЛ рдкя┐╜...
рдЬреЛ рдХрднреА рд╣рд╛рд░ рди рдорд╛рдиреЗ, рдЙрд╕реЗ рдХреНрдпрд╛ рдХрд╣рддреЗ рд╣реИрдВ?
тАШрд░рд╛рдзрд╛ рд╕реЗ рдЧрд╛рдпрд╛ рдирд╣реАрдВ рдЧрдпрд╛тАЩ рдЗрд╕ рд╡рд╛рдХреНрдп рдореЗрдВ рдХреМрди-рд╕рд╛ рд╡рд╛рдЪреНрдп рд╣реИ?