Start learning 50% faster. Sign in now
ATQ, Sum of T1, T2, T3, and T4 = (17 + x) × 4 = 68 + 4x Sum of T1 and T2 = (13 + x) × 2 = 26 + 2x Sum of T3 and T4 = (13 + 3x) × 2 = 26 + 6x Now, setting the equations equal: 26 + 2x + 26 + 6x = 68 + 4x Or, x = 4 Sum of T3 and T4 = 26 + 6 × 4 = 50 T3, T4 = 23, 29 Answer: T4 = 29
If x = √7 + √6 and y = √7 - √6 , then the value of is (x2 + y2)/(x3 + y3).
...If (x + y + z) = 68, (x/z) = (3/4) and (z/y) = (2/5), then find the value of ‘y’.
(123×123×123 + 130×130×130)/(123×123 - 123×130 + 130×130) = ?
If (x2 + y2 + z2 - 4x + 6y + 13) = 0, then find the value of (x + y + z).
(288 ÷ 8)² × (144 ÷ 24)³ = 24 × ? × (51840 ÷ 20)
If (a3+1)/(a+1) = (a3-1)/(a-1) and a ≠ 1, -1. Find the value of 'a'
What is the highest common factor of (x³ - x² - x - 15) and (x³ - 3x² - 3x + 9)?
If (a + b) = 7 and ab = 9, then find the value of (a2 + b2).