Question

    The time taken by the boat to cover (d+130) km distance

    in downstream is 1.9 hours less than the time taken by the same boat to cover (d-45) km distance in upstream. The same boat can cover (d+20) km distance in still water in 11.75 hours. If the speed of the stream is 75% less than the speed of the boat, then find out the value of ‘d’.
    A 560 Correct Answer Incorrect Answer
    B 520 Correct Answer Incorrect Answer
    C 440 Correct Answer Incorrect Answer
    D 480 Correct Answer Incorrect Answer
    E None of the above Correct Answer Incorrect Answer

    Solution

    Let’s assume the speed of the boat in still water and the speed of the stream are ‘B’ and ‘C’ respectively. If the speed of the stream is 75% less than the speed of the boat. C = (100-75)% of B C = 25% of B C = (25/100) x B C = (1/4) x B B = 4C    Eq. (i) The same boat can cover (d+20) km distance in still water in 11.75 hours. (d+20)/B = 11.75 Put the value of ‘B’ from Eq. (i) in the above equation. (d+20)/4C = 11.75 (d+20)/47 = C    Eq. (ii) The time taken by the boat to cover (d+130) km distance in downstream is 1.9 hours less than the time taken by the same boat to cover (d-45) km distance in upstream. [(d+130)/(B+C)] = [(d-45)/(B-C)] - 1.9 Put the value of ‘B’ from Eq. (i) in the above equation. [(d+130)/(4C+C)] = [(d-45)/(4C-C)] - 1.9 [(d+130)/5C] = [(d-45)/3C] - 1.9 Put the value of ‘C’ from Eq. (ii) in the above equation. [47(d+130)]/[5(d+20)] = [47(d-45)]/[3(d+20)] - 1.9 By solving the above equation, the value of ‘d’ = 450

    Practice Next

    Relevant for Exams: