Question
A boat can travel 80 km downstream in 4 hours and the
same distance upstream in 8 hours. If the speed of the boat in still water is increased by 50%, how long will it take to travel 120 km downstream at the increased speed?Solution
Let the speed of the boat in still water be B km/h and the speed of the stream be S km/h. From the given data: Downstream speed = B + S = 80 km / 4 hours = 20 km/h. Upstream speed = B - S = 80 km / 8 hours = 10 km/h. Solving these two equations: B + S = 20 and B - S = 10. Adding the two, 2B = 30 → B = 15 km/h. Substituting B = 15 into B + S = 20: S = 5 km/h. Now, the new speed of the boat in still water is 1.5 * 15 = 22.5 km/h. The new downstream speed = 22.5 + 5 = 27.5 km/h. Time to travel 120 km downstream = 120 / 27.5 ≈ 4.36 hours.
7, 26, 238, 962, 8522, 34078
41 48 89 137 226 ?
...5Â Â Â Â Â Â Â Â Â Â Â Â Â Â 9Â Â Â Â Â Â Â Â Â Â Â Â Â Â 30Â Â Â Â Â Â Â Â Â Â Â 115Â Â Â Â Â Â Â Â Â 582Â Â Â Â Â Â Â Â Â 3483
15Â Â Â Â ...
69    119    156    ?     199    209
25 13.5 12.5 20.75 39.5 ? 302.25
...440                 482              526                  572                ?  �...
If  2  4  6  x  14  28  30
Then, x³+ 2 x+1 = ?
12 7 10 25 107 ?
...19, 37, 65, 91, 127, 169
22Â Â Â 23Â Â Â Â 32Â Â Â Â 57Â Â Â 106Â Â Â ?