In ΔABC, AD and BE are perpendiculars from A and B to the sides BC and AC, then-
i) p2+p=56
II) q2-17q+72=0
...I. 5x² + 17x + 6 = 0
II. 2y² + 11y + 12 = 0
...I. (y – 5)2 – 9 = 0
II. x2 – 3x + 2 = 0
I. 5x² - 28x + 39 = 0
II. 2y² - 13y + 20 = 0
I.8(x+3)+ 8(-x)=72
II. 5(y+5)+ 5(-x)=150
If a quadratic polynomial y = ax2 + bx + c intersects x axis at a and β, then
I. 2x2 + 12x + 18 = 0
II. 3y2 + 13y + 12 = 0
I. x2 - 4x – 21 = 0
II. y2 + 12y + 20 = 0
I. 14p² + 9p - 8 = 0
II. 4q² - 19q + 12 = 0
I. x2 + 16x + 63 = 0
II. y2 + 2y - 15 = 0