Question
If in the given figure AD is perpendicular to BC, AC =
26 units, CD = 10 units, BC = 42 units, triangle DAC whose angle is x and angle B = y, then, find the value of 6/cosx -5/cosy +8 tany =?Solution
In ∆ ADC –  AD =   √(AC)2-DC2 )     AD =  √(262-102 )  AD =   √(676-100)  AD = √576  =  24   AD   =   24   Now in ∆ABD  AB  = √(AD)2+(BD)2 )   AB   =   √(242+322   AB   =    √(576+1024)    =  √1600   AB = 40 NOW-                                                       ∴The side opposite to the angle is the hypotenuse,  so the base for angle x will be AD. cosx=24/26  cosy=32/40 tany=24/32 6/cosx -5/cosy +8 tany =? =6/(24/26)-5/(32/40)+8×24/32 =26/4 - 25/4 + 24/4           =(50-25)/4   =25/4 6/cosx -5/cosy +8 tany =25/4
9 17 53 103 310 619
...131, 212, 261, 286, 295, 299
Find the wrong number in the given number series.
65, 91, 127, 163, 217, 271
8 5 6.5 11.75 26 65
...164, 304, 433, 551, 658, 752
174 180 198 252 414 910
Find the wrong number in the given series.
823, 1005, 1194, 1390, 1600, 1802, 2055
124, 132, 118, 140, 108, 148
- Find the wrong number in the given number series. 
7, 32, 257, 882, 2107, 4132 27, 35, 51, 75, 109, 147