AB = Pole CE = Tower AB = 15 m In ∆ABE tan30° = AB/BE 1/√3 = AB/BE 1/√3 = 15/BE BE = 15√3 m AD = BE = 15√3 In ∆ACD tan60° = CD/AD ⇒ √3 = CD/(15√3) ⇒ CD = 45 CD + DE = 45 + 15 ⇒ 60 m
I. 2p² - 11p + 12 = 0
II. 2q² - 17q + 36 = 0
I. 99x² + 161 x + 26 = 0
II. 26 y² + 161 y + 99 = 0
I. 2b2 + 31b + 99 = 0
II. 4a2 + 8a - 45 = 0
I. √(17x) + √51 = 0
II. √(4y) + 3 = 0
A and B are the roots of equation x2 - 13x + k = 0. If A - B = 5, what is the value of k?
I. x2 – 12x + 32 = 0
II. y2 + y - 20 = 0
I. 2x² - 12x + 16 = 0
II. 4y² - 8y - 12 = 0
I. x³= ((4)5+ (15)³)/(3)4
II. 8y³=(-13)3÷ √1521+ (3y)³
I. 4x2 + 9x - 9 = 0
II. 4y2 - 19y + 12 = 0
I. 2x2 – 10x – 48 = 0
II. y2 – 16y – 297 = 0