Question

    Find the maximum value of the function g(x) =

    4x3 − 24x2 + 48x – 10 on the set T = {x ∈ R ∣ x2 − 14x + 45 ≤ 0} .  
    A 1394 Correct Answer Incorrect Answer
    B 1194 Correct Answer Incorrect Answer
    C 1294 Correct Answer Incorrect Answer
    D 1094 Correct Answer Incorrect Answer

    Solution

    Given, S = {x  ∈   ℝ /x2 + 45 ≤ 14x} ∴ x+ 45 ≤ 14x ⇒ x2 - 14x + 45 ≤ 0 ⇒  (x - 5) (x - 9) ≤ 0 ⇒  x ∈  [5, 9] Now, f(x) = 4x3 − 24x2 + 48x – 10 ⇒  f'(x) = 12x- 48x + 48 ⇒  f'(x) = 12(x- 4x + 4) = 12 [(x2 - 4x + 4) − 1] = 12(x - 2)2 - 12 ∴ f'(x) > 0 ∀ x  ∈  [5, 9] ∴ f(x) is strictly increasing in the interval [5, 9] ∴ Maximum value of f(x) when x  ∈  [5, 9] is f(9) = 1394 

    Practice Next