Start learning 50% faster. Sign in now
Get Started with ixamBee
Start learning 50% faster. Sign in nowGiven, S = {x ∈ ℝ /x2 + 45 ≤ 14x} ∴ x2 + 45 ≤ 14x ⇒ x2 - 14x + 45 ≤ 0 ⇒ (x - 5) (x - 9) ≤ 0 ⇒ x ∈ [5, 9] Now, f(x) = 4x3 − 24x2 + 48x – 10 ⇒ f'(x) = 12x2 - 48x + 48 ⇒ f'(x) = 12(x2 - 4x + 4) = 12 [(x2 - 4x + 4) − 1] = 12(x - 2)2 - 12 ∴ f'(x) > 0 ∀ x ∈ [5, 9] ∴ f(x) is strictly increasing in the interval [5, 9] ∴ Maximum value of f(x) when x ∈ [5, 9] is f(9) = 1394
√ [? x 11 + (√ 1296)] = 16
Calculate the simplified value of the given expression:
√? × 4 - 374 + 127 + 300 = 117
25% of 240 + √? = (2/3) × 120
√(?) = (897 × 51) ÷ 1016.6
35 × 540 ÷ 18 of 15 – ? = 15
311 × 17 = ? + 2482
52% of 400 + √(?) = 60% of 600 - 25% of 400
1090 + 237 + 30549 - 86 - 104 = ? x 6
Find the Value of √(-√3+√(3+8√(7+4√3)))?