x² - 1/x² = (x + 1/x) (x - 1/x) ------ (i) Here, (x² + 1/x²) = 4 => x² + 1/x² + 2 = 6 => (x + 1/x)² = 6 => (x + 1/x) = {{{`sqrt(6)` }}} Putting these value in eqn (i) we get, => x² - 1/x² = {{{`sqrt(6)` }}} {{{`xx` }}} {{{`sqrt(2)` }}} => {{{`sqrt(12)` }}} = 2{{{`sqrt(3)` }}}
(35.09 × 4.98 + 512.12 ÷ 31.82) =?
49.99% of 5400 + 923=?
194.95 + 3.98 × 64.99 - ? = (10.99 + 9.02)2
(29.892 × √290) + 32.98 × 6.91 = ?
`sqrt(7.987 X 24.790 +199.991)`
[(80.97) 3/2 + 124.95 of 8% - {(21.02/6.95) × 10.9 × 5.93}]/ 45.08 = ?
26.23 × 31.82 + 44.8% of 1200 + ? = 1520
(29.98% of 9840) + ? + (19.899% of 8490) = 7560
? + 154.99 – 110.01 = 30.01 × 4.98
(64.99% of 599.91 + 49.99% of 199.99 + 135.11) = ?2