Question

    The average of the areas of 2 similar triangles is 706.5

    m2 whose perimeters are in the ratio of 6: 11. What is 25% of the difference (in m2) in areas of both triangles?
    A 127.6 Correct Answer Incorrect Answer
    B 147.5 Correct Answer Incorrect Answer
    C 229.5 Correct Answer Incorrect Answer
    D 217.3 Correct Answer Incorrect Answer

    Solution

    The ratio of the areas of the similar triangles is (6/11)2 =36/121 Given the average area is 706.5 m², the total area is 1413 m². Let the areas be A₁ = 36x and A2 = 121x. ATQ- 36x+121x =1413 157x =1413 x =1413/157 Solving, x = 9 m². Thus, A₁ = 324 m² and A2 = 1089 m². Difference = 765 m². 30% of the difference =765×30/100= 229.5 m². So, the answer is 229.5 m².

    Practice Next

    Relevant for Exams: