Question
A mixture contains milk and water, where the difference
between the quantities of milk and water is 20% of the total mixture, which is 180 ml. If adding 18 ml of water changes the ratio of water to milk to 5:6, what is the initial quantity of milk in the mixture?Solution
Difference between initial quantities of milk and water = 0.2 X 180 = 36 ml Let the initial quantity of milk in the solution be 'a' ml. So, initial quantity of water in the solution = (a + 36) ml or, (a - 36) ml Case I: quantity of water = (a + 36) ml (a + 36 + 18) ÷ a = (5/6) Or, 6 X (a + 54) = 5a Or, 6a + 324 = 5a So, 'a' = - 324 which is not possible, since quantities can't be negative. Case II: quantity of water = (a - 36) ml (a - 36 + 18) ÷ a = (5/6) Or, 6 X (a - 18) = 5a Or, 6a - 108 = 5a So, 'a' = 108 Therefore, initial quantity of milk = 108 ml
I. 8x² - 74x + 165 = 0
II. 15y² - 38y + 24 = 0
525 ÷ 21 x 28 – 853 + 264 = ?
72 × 2 = ? + 104 – 14
18/2 of 3/9 of 2/6 of 69690= ?
- What will come in the place of question mark (?) in the given expression?
(40 ÷ 5 + 56 ÷ 8) X (? - 42) = 120 
535 + ? × 27 - 22 × 20 = 230Â
What will come in the place of question mark (?) in the given expression?
? = (27 × 13) – 26% of (412 – 92 )