Start learning 50% faster. Sign in now
ATQ, Let the investments of R and S be Rs. 'r' and Rs. 's' respectively. Ratio of the respective profit shares of 'R', 'S' and 'X' at the end of 16 months: = {r × 8}:{(s × 8) + (s + 4,000) × 8}:{24,000 × 12} = (8r) :(8s + 8s + 32,000) :(2,88,000) = (8r) :(16s + 32,000) :(2,88,000) = (r) :(2s + 4,000) :(36,000) ATQ: (2s + 4,000) :(36,000) = 11:9 So, 9 × (2s + 4,000) = 11 × 36,000 Or, 18s + 36,000 = 3,96,000 Or, 18s = 3,60,000 Or, 's' = 20,000 Now, Profit share of 'R' = (3/19) × {r + (2 × 20,000) + 4,000 + 36,000} So, 'r' = (3/19) × {r + 40,000 + 40,000} Or, 19r = 3 × (r + 80,000) Or, 19r = 3r + 2,40,000 Or, 16r = 2,40,000 Or, 'r' = 15,000 SO, 15,000 and 20,000 is correct pairs
sin2 9 ° + sin2 10 ° + sin2 11 ° + sin2 12 ° + ……… + sin2 81 ° = ?
...If 4cos2x - 3 = 0, and (0° > x > 90°), then find the value of 'x'.
If tan θ = (2/√5), then determine the value of cos2 θ
If √3cosec 2x = 2, then the value of x:
If x = (sin 30 ° + cos 30 ° )/sec 60 ° , then find the value of 4x.
If sin3A = cos(5A-30°), then what is the value of A? Given that 3A is an acute angle.
If sin x + cos x = √2 sin x, then the value of sin x - cos x is:
Simplify the given equation: