For At least 1 boy we have (1 boy and 5 girls), (2 boys and 4 girls), (3 boys and 3 girls), (4 boys and 2 girls), (5 boys and 1 girl), (6 boys) ∴ Required Number of ways = (8C1× 6C5) + (8C2 × 6C4) + (8C3 × 6C3) + (8C4 × 6C2) + (8C5 × 6C1) + 8C6 = 48 + 420 + 1120 + 1050 + 336 + 28 = 3002 ways
Statements: B ≤ C < E; D ≤ F ≤ G; E = D; A > B
Conclusions:
(i) E ≥ G
(ii) A < E
(iii) B ≤ G...
Statement: C > B > T < J > D > M < Z
Conclusion: I. C > M II. C > Z
Statements: U ≤ X = V < W; V > T = Q ≥ R
Conclusions: I. V ≥ R II. W > R
Statements: V < P ≤ F = Y, Y < O ≤ J < S
Conclusions:
I. V ≤ O
II. F < J
III. S > P
Statements: S @ O, O & E, E $ K, K # C
Conclusions: I. S @ K II. K @ O III. C @ E
...Statement: A = B ≥ C ≥ D < E < F ≥ G; D > H
Conclusion:
I. H ≥ G
II. A > H
...Statements: G > H ≥ I > K = L; O ≥ N ≤ M < K
Conclusions:
I. H > N
II. I < O
III. I ≥ M
Statements: T # L # C $ X & Y % E % F
Conclusions:
I. Y @ F
II. Y & F
III. Y & C
...Statements:
P = G > Q = C > B; J < Z ≤ C
Conclusions:
I. Q > Z
II. B ˃ J
Statements: S * C, C $ T, T # U, U % V
Conclusions :
I.V # T
II. C % U
III. S # U
IV. C % V...