Question
I. Â 2(x+2)+ 2(-x)=5 II.
 (1/(y+1)+ 1/(y+5))=(1/(y+2)+  1/(y+4)) In the following questions two equations numbered I and II are given. You have to solve both the equations. Give answer if;Solution
 2(x+2)+ 2(-x)=5 2x  ×2² +  1/2x - 5=0 Put 2x = a We get 4a+  1/a- 5=0 4a²+1-5a=0 4a²-4a-a+1=0 (4a-1)(a-1)= 0 a=1,1/4 If 2^x=1 x=0 2^x=1/4   If, 2^x=1/2²   x= -2 (1/(y+1)+ 1/(y+5))=(1/(y+2)+  1/(y+4)) (1/(y+1)- 1/(y+4))=(1/(y+2)-  1/(y+5)) (y+4-y-1)/(y+1)(y+4) =  (y+5-y-2)/((y+2)(y+5)) 3/(y+1)(y+4) =  3/((y+2)(y+5)) 1/(y+1)(y+4) -  1/((y+2)(y+5))=0 ((y+2)(y+5)- (y+1)(y+4))/((y+1)(y+4)(y+2)(y+5))=0 y²+7y+10-(y^2+ 5y+4)=0   y²+7y+10-y²-5y-4=0 2y+6=0 y= -3 Hence, x>y
- In a triangle ABC, if 5∠A = 3∠B = 15∠C, then find the value of cosA + sin(C + 10 ° )
If 3 tan X + cot X = 2√3, then find the value of 6 tan2 X + 2 cot2 X.
Given that tan(A+B) = √3 and tan(A-B) =1/√3, find the values of A and B.
A man is standing at a point 20 meters away from a vertical tower. The angle of elevation from the point to the top of the tower is 60°. Find the heigh...
Calculate the maximum and minimum value of (8cosA + 15sinA + 15), if 'q' lies in the first quadrant.
If 2 sec 3x = 4, then the value of x:
The minimum value of 45 sin2 θ + 28 cos2 θ is
The minimum value of 12 sin θ + 5 cosθ is