I. 2x2 + 12x + 18 = 0
II. 3y2 + 13y + 12 = 0
I. 2x2 + 12x + 18 = 0 => 2x2 + 6x + 6x + 18 = 0 => 2x(x + 3) + 6(x + 3) = 0 => (x + 3) (2x + 6) = 0 => x = -3, -3 II. 3y2 + 13y + 12 = 0 => 3y2 + 9y + 4y + 12 = 0 => 3y(y + 3) + 4(y + 3) = 0 => (y + 3) (y + 4) = 0 => y = -3, -4 Hence, x ≥ y.
I. 6x2 + 19x + 10 = 0
II. y2 + 10y + 25 = 0
I. 6x² - 49x + 99 = 0
II. 5y² + 17y + 14 = 0
I. 35 y² + 58 y + 24 = 0
II. 21 x² + 37 x + 12 = 0
I. p2 - 19p + 88 = 0
II. q2 - 48q + 576 = 0
I. 3x2 – 17x + 10 = 0
II. y2 – 17y + 52 = 0
If a quadratic polynomial y = ax2 + bx + c intersects x axis at a and β, then
I. x − √2401 = 0
II. y2 − 2401 = 0
I. 2x² - 7x + 3 = 0
II. 8y² - 14y + 5 = 0
I. x² - 33x + 270 = 0
II. y² - 41y + 414 = 0
I.70x² - 143x + 72 = 0
II. 80 y² - 142y + 63 = 0