Question
In each of these questions, two equations (I) and (II)
are given.You have to solve both the equations and give answer I. x² - 8x + 15 = 0 II. y² - 3y + 2 = 0Solution
x2 −8x +15 = 0 ⇒ x2 −5x − 3x +15 = 0 ⇒ x(x − 5) − 3(x −5) = 0 ⇒ (x −3)(x − 5) = 0 ∴ x = 3 or 5 II. y2 − 3y + 2 = 0 ⇒ y2 − 2y − y + 2 = 0 ⇒ y(y − 2) − 1(y − 2) = 0 ⇒ (y − 1)(y − 2) = 0 therefore, y = 1 or 2 Hence, x > y Alternate Method: if signs of quadratic equation is -ve and +ve respectively then the roots of equation will be +ve and +ve. So, roots of first equation = x = 3, 5 So, roots of second equation = y = 1, 2 After comparing roots of quadratic equation we can conclude that x > y.
I. 6x2 - 47x + 77 =0
II. 6y2 - 35y + 49 = 0
I: x2 + 31x + 228 = 0
II: y2 + 3y – 108 = 0
I. 2x² - 7x + 3 = 0
II. 8y² - 14y + 5 = 0
I. 5x + y = 37
II. 4y+ x = 15
I. x² - 33x + 270 = 0
II. y² - 41y + 414 = 0
If x + 1/x = 3, find x² + 1/x².
Solve for x: |2x − 5| + |x + 1| ≤ 10.
I. 2b2 + 31b + 99 = 0
II. 4a2 + 8a - 45 = 0
I. 117x² + 250x + 117 = 0
II. 54y² -123y + 65 = 0
I. y² - 7 y – 18 = 0
II. x² + 10 x + 16 = 0