I. x ² + 5 x + 6 = 0
II. y²+ 7 y + 12= 0
I. x ² + 5 x + 6 = 0 ( x + 3) ( x + 2) = 0 x = -3, -2 II. y²+ 7 y + 12= 0 ( y + 4) ( y + 3) = 0 y = -3, -4 Hence, x ≥ y
I. 2x2– 25x + 33 = 0
II. 3y2+ 40y + 48 = 0
I. 3x2 – 16x + 21 = 0
II. y2 – 13y + 42 = 0
I. x2 – 18x + 81 = 0
II. y2 – 3y - 28 = 0
If α, β are the roots of the equation x² – px + q = 0, then the value of α2+β2+2αβ is
...I. 4p² + 17p + 15 = 0
II. 3q² + 19q + 28 = 0
I. x2 – 12x + 32 = 0
II. y2 + y - 20 = 0
I. 20y² - 13y + 2 = 0
II. 6x² - 25x + 14 = 0
I. 40x² + 81x + 35 = 0
II. 63y² + 103y + 42 = 0
I. 2p2 - 3p – 2 = 0 II. 2q2 - 11q + 15 = 0
I. 8/(21x) - 2/7 = 0
II. 16y² - 24y +9 = 0