ATQ, From I: 27(p + 2) = 2p(24 – p) Or, 27p + 54 – 48p + 2p2 = 0 Or, 2p2 – 21p + 54 = 0 Or, 2p2 – 12p – 9p + 54 = 0 Or, 2p(p – 6) – 9(p – 6) = 0 Or, (2p – 9)(p – 6) = 0 Or, p = (9/2) or 6 From II: 2q2 – 25q + 78 = 0 Or, 2q2 – 12q – 13q + 78 = 0 Or, 2q(q – 6) – 13(q – 6) = 0 Or, (2q – 13)(q – 6) = 0 Or, q = (13/2) or 6 Therefore, q ≥ p
I. 15/(√x)+9/(√x)=11√x
II. (√y)/4 + (5√y)/12 = 1/(√y)
I. 40 x² - 93 x + 54 = 0
II. 30 y² - 61 y + 30 = 0
I). p2 + 22p + 72 = 0,
II). q2 - 24q + 128 = 0
I. (y – 5)2 – 9 = 0
II. x2 – 3x + 2 = 0
I. 2x2 – 5x - 12 = 0
II. y2 – 11y + 30 = 0
I. 96x² + 52x - 63 = 0
II. 77y² + 155y + 72 = 0
I. 5x + y = 37
II. 4y+ x = 15
I). p 2 – 17p + 70 = 0
II). q 2 – 25q + 154 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 38x + 352 = 0
Equation 2: y² - 38y + 312 = 0
I. 8x2- 2x – 15 = 0
II. 12y2- 17y – 40 = 0