If sinθ + cosθ = 2a and tanθ + cotθ = b, then find a in terms of b.
Start with sinθ + cosθ = 2a. Squaring both sides gives: sin²θ + cos²θ + 2sinθcosθ = 4a². Using sin²θ + cos²θ = 1: 1 + 2sinθcosθ = 4a². Then, we know from tanθ + cotθ = b, that: tanθ + cotθ = sinθ/cosθ + cosθ/sinθ = (sin²θ + cos²θ)/sinθcosθ = 1/sinθcosθ = b. Therefore: sinθcosθ = 1/b. Substituting back, we have: 1 + 2(1/b) = 4a². Rearranging gives: 4a² = 1 + 2/b. Thus, we can solve for a in terms of b: a = √(1 + 2/b)/2. Correct answer : b) √(1 + 2/b)/2.
44.87% of (39.85 × ?) – 1520.88 0.51 = 1400.8
13.96% of (141.17 + 158.85) + 7.95³ - (6.88 of 9.07) = ? of (58.06 - 13.02)
24.99 × 32.05 + ? - 27.01 × 19.97 = 29.99 × 27.98
(7.992/√?) + √16/? = 14.032/?
33.33% of 179.99 = 29.98% of 199.98 - ?
(14.56)² × √840 =?
...(3/5) of 3025 + (18² + 12²) = ? + 22.22% of 1125
6.992 + (2.01 × 2.98) + ? = 175.03
1219.98 ÷ 30.48 × 15.12 = ? × 2.16