Start learning 50% faster. Sign in now
Volume of the cone = (1/3) * π * r² * h Where r = 5 cm and h = 12 cm: Volume of the cone = (1/3) * π * (5²) * 12 = (1/3) * π * 25 * 12 = 100π cm³. For the sphere, Volume = (4/3) * π * R³. Setting the volumes equal: (4/3) * π * R³ = 100π Cancel π: (4/3) * R³ = 100 R³ = 75 R = ∛ 75 ≈ 4.22 cm. Correct option: a) 4.2 cm
If (5sinx - cosx) = 2√2sinx, then find the value of 'tanx'
Find the value of (1 - sin2q) X (secq + tanq) X (secq - tanq) X cosec2q
If tan θ + cot θ = 2 where 0 < θ < 90 ; find the value of tan17 θ + cot19 θ.
[(sinx – 2sin 3 x)/(2cos 3 x – cosx)] 2 + 1, x ≠45 o , is equal to:
if 7 sin 2 x + 2 cos 2 x = 4 then find tan x
If cos θ + sin θ = m, sec θ + cosec θ = n then n(m 2 – 1) is equal to?
What is the value of sin (B – C) cos (A – D) + sin (A – B) cos (C – D) + sin (C – A) cos (B – D)?
If sin x + cos x = √2 sin x, then the value of sin x - cos x is:
The minimum value of 9 cos2 θ + 36 sec2 θ is