Area of one hexagonal base = (6√3/4) * (a²) Where a = 4 cm: = (3√3/2) * (4²) = (3√3/2) * 16 = 24√3 cm². Total area of the two bases = 2 * 24√3 = 48√3 cm². Lateral surface area = perimeter of the base * height = (6 * 4) * 10 = 240 cm². Total surface area = Lateral surface area + Total area of bases = 240 + 48√3 ≈ 240 + 83.14 = 323.14 cm². Correct option: a) 323.14 cm²
1.3wx = 40 – wy
2. b2 = 2b + p
3. d2 + d = q
Now, observe the given conditions:
One root of equation...
Equation 1: x² - 90x + 2025 = 0
Equation 2: y² - 88y + 1936 = 0
I. 7x + 8y = 36
II. 3x + 4y = 14
I. 6 y² + 11 y – 7= 0
II. 21 x² + 5 x – 6 = 0
I. 5x + y = 37
II. 4y+ x = 15
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 45x + 450 = 0
Equation 2: y² - 48y + 540 = 0Â...
I. 4x2 + 9x - 9 = 0
II. 4y2 - 19y + 12 = 0
I. 14p² + 9p - 8 = 0
II. 4q² - 19q + 12 = 0
I. 20y² - 13y + 2 = 0
II. 6x² - 25x + 14 = 0
I. 81x - 117√x + 40 = 0
II. 81y - 225√y + 136 = 0