Start learning 50% faster. Sign in now
Using Heron’s formula, s = (a + b + c) / 2, where s is the semi-perimeter. s = (13 + 14 + 15) / 2 = 21 cm. Area = √[s(s - a)(s - b)(s - c)] = √[21 * (21 - 13) * (21 - 14) * (21 - 15)] = √[21 * 8 * 7 * 6] = √7056 = 84 cm² Correct Answer: a) 84 cm²
Two trains start at the same time from Patna and Delhi and proceed toward each other at the speed of 120 km/hr and 60 km/hr respectively. When they meet...
Train ‘A’ running with a speed of 126 km/hr can cross a standing goods train of 4 times its length in 25 seconds. Find the time taken by 500 metres ...
A train crosses a 300-metre-long bridge in 20 seconds, and the same train crosses a tunnel twice the length of the bridge in 35 seconds. Find the speed ...
Train A running at speed of 81 km/hr crosses a platform having twice the length of train in 12 sec. Train B whose length is 360m crosses same platform i...
Train X, traveling at a speed of 72 km/hr, crosses another train Y, which is moving in the opposite direction at a speed of 108 km/hr, in 't' seconds. I...
Train ‘A’ running with a speed of 90 km/h crosses a pole in 7 seconds. If the time taken by train ‘A’ to cross train ‘B’ running with a spee...
Train A running at speed of 162 km/hr crosses a platform having twice the length of train in 22 sec. Train B whose length is 760m crosses same platform ...
A train 500 m long running at 90 km/hr takes 40 seconds to cross a bridge. The length of the bridge is
Train P travelling at 50 km/hr crosses another train Q, having three fourth of its length and travelling in opposite direction at 40 km/hr in 14 seconds...