ATQ, Quantity I: Initial quantity of milk = 360×(0.50/0.50 )=360 litres Final quantity of milk = 360+x+10=(370+x) litres Final quantity of water = 360+x−15=(345+x) litres According to the question, (370+x)/(345+x) = 5/6 6(370+x)=5(345+x) 2220+6x=1725+5x x=160 So, Quantity I = 160 Quantity II: Let the initial quantity of sugar and water be 8x litres and 6x litres, respectively Final quantity of sugar = (0.65×8x)+6=(5.2x+6) litres Final quantity of water = (0.65×6x)+8=(3.9x+8) litres According to the question, (5.2x+6)/(3.9x+8) = 7/5 5(5.2x+6)=7(3.9x+8) 26x+30=27.3x+56 1.3x=26 x = 26/1.3 x = 20 Therefore, ‘y’ = 0.25 × 6x = x So, Quantity II = 20 So, Quantity I > Quantity II
10.10% of 999.99 + 14.14 × 21.21 - 250.25 = ?
25.11% of 199.99 + √143.97 ÷ 6.02 = ?
(2160.23 ÷ 35.98) + (600.32 ÷ 23.9) + 1744.11 = ?
(400.01% of 149.89) ÷ 49.97 = ?2 ÷ (95.98 ÷ 31.99)
? + 163.99 – 108.01 = 25.01 × 6.98
20.06% of 359.89 - 15.95 X ? + 18.07 X 14.95 = 48.87 X 6.02
? = 29.91% of 49.94% of ((56.25 × 4.09 + 23.01 × 7.89) × 99.98)
(8.083.03 + 59.59% of 839.83) ÷ 16.06 × 24.04 = ?3 + 1012.12
1359.98 ÷ 30.48 × 15.12 = ? × 4.16
{1722.95 + 5.05 × 648.08 – (2728.06 ÷ 22.05)} = ?