Question

    In this problem, two quantities, I and II, are provided. You are required to solve both quantities and determine the appropriate relationship between Quantity-I and Quantity-II. 

    Quantity-I: Determine the value

    of 'a' such that a2− 25a + 156 = 0. Quantity-II: Determine the value of 'b' such that 2b2 − 67b + 546 = 0
    A Quantity-I > Quantity-II Correct Answer Incorrect Answer
    B Quantity I < Quantity II Correct Answer Incorrect Answer
    C Quantity I = Quantity II or No relation can be established Correct Answer Incorrect Answer
    D Quantity-I ≤ Quantity-II Correct Answer Incorrect Answer
    E Quantity I ≥ Quantity II Correct Answer Incorrect Answer

    Solution

    ATQ, Quantity I: a2 - 25a + 156 = 0 Or, a2 - 12a - 13a + 156 = 0 Or, a(a - 12) - 13(a - 12) = 0 Or, (a - 12)(a - 13) = 0 So, a = 12 or a = 13 So, Quantity I = 12 or 13 Quantity II: 2b2 - 67b + 546 = 0 Or, 2b2 - 39b - 28b + 546 = 0 Or, 2b(b - 14) - 39(b - 14) = 0 Or, (2b - 39) (b - 14) = 0 So, b = 14 or b = 19.5 So, Quantity II = 14 or 19.5 Therefore, Quantity I < Quantity II

    Practice Next

    Relevant for Exams: