Let the sum be Rs. p. According to the question, p + (p × x × 3)/100 = 5472 ....(1) According to the question, p + (p × x × 7.5)/100 = 6930 ....(2) (2) - (1) we get, p + (p × x × 7.5)/100 - p - (p × x × 3)/100 = 6930 - 5472 ⇒ 7.5xp/100 - 3xp/100 = 1458 ⇒ 4.5xp/100 = 1458 ⇒ xp = 145800/4.5 ⇒ xp = 32400 ....(3) Putting xp = 32400 in (2), p + (p × x × 7.5)/100 = 6930 ⇒ p + (32400 × 7.5)/100 = 6930 ⇒ p = 6930 - (32400 × 7.5)/100 ⇒ p = 6930 - 2430 ⇒ p = 4500 ....(4) Putting p = 4500 in (3), x × 4500 = 32400 ⇒ x = 32400/4500 ⇒ x = 7.2 ∴ The value of x is 7.2.
Find the approximate value of Question mark(?). No need to find the exact value.
(55.96 × 4.01) ÷ 7 + √(120.81) × 3 – 10% of 199.99 = ?<...
`root(3)(725.87)` `-:` `sqrt(81.033)` + 49.88% of 809.77 = ? - (14.78 `xx` 52.2)
40 × 55.96 ÷ 7 – 20% of 699.81 + 63 = ? - (11479.50 ÷ 7)
386.99 + 397.99 + ? - 232.02 = 35.02 × 31.99
?% of 1200.22 + 319.82 = 3.99 × 295.64
[15.87% of 599.97 + 40.08 × ?] ÷ 4.04 = 8.082.02
19.92 × (52.065/260.07) × (45.09% of 359.87) =?
(?)2 + 6.113 = 25.92 – 19.03
? 2 – 17.89 2 + 15.33% of 1199.76 = 49.54% of 49.68
(2160.23 ÷ 35.98) + (600.32 ÷ 23.9) + 1744.11 = ?