Question
Anoop invested Rs. 'r', while
Binny invested Rs. 15,000. After 7 months, Anoop reduced his investment by Rs. 3,000, and Binny reduced his investment by Rs. 5,000. If the profit share ratio of Binny to Anoop at the end of 21 months is 5:6, calculate 25% of 'r'.Solution
ATQ, Ratio of profit shares of 'Anoop' to that of 'Binny': = [r X 7 + (r - 3,000) X 14]:[15,000 X 7 + (15,000 - 5,000) X 14] = [r + (r - 3,000) X 2]:[15,000 + 10,000 X 2] = (3r - 6,000) :(35,000) So, (3r - 6,000) :(35,000) = 6:5 Or, 3r - 6,000 = 35000 X (6/5) Or, 3r - 6,000 = 42,000 Or, 3r = 48,000 So, 'r' = 16,000 Therefore, required value = 0.25 X 16,000 = 4,000
- The base of a right pyramid is an equilateral triangle with side 12 cm. If the height of the pyramid is 40√3 cm, calculate the volume of the pyramid.
In triangle ABC, the difference between angle A and angle B is 16°, and the difference between angle A and angle C is 8°. Determine the measure of an...
If area of similar triangles ∆ ABC and ∆ DEF be 64 sq Cm and 121 sq cm and EF = 15.4 cm then BC equals
Find the length of AB, if ΔABC ~ ΔRQP and AC = 22.5 cm, RP = 9 cm and RQ = 6 cm.
The angles of a triangle are in the ratio 4:5:3. Determine the sum of the smallest and largest angles of the triangle.
If the angles of a triangle are in the ratio of 2:5:8, then find the value of the biggest angle.
Find the area of a triangle whose sides are 12 m, 14 m, and 16 m.
In a right-angled triangle, the legs are in the ratio 3:4, and the hypotenuse is 25 cm. Find the perimeter of the triangle.
- A triangle has a base of 27.3 cm and the height is 11.4 cm. Find its area.
ABC is an equilateral triangle with sides of 24cm. Find the difference between its in-radius and circum-radius.