Let the length of the first train is x metre Length of second train = 3x/4 Therefore, (60 + 48) x 5/18 = {x + (3x/4)}/14 ⇒ 108 x 5/18 = (7x/4)/14 ⇒ x = 240 m Therefore, let the length of the platform be y metre ⇒ 60 x 5/18 = (240 + y)/24 ⇒ 400 = 240 + y ⇒ y = 400 – 240 = 160 m
116*2/3% of 18600 + 666*2/3% of 1290 = 457*1/7% of 1750 + 555*5/9% of 3150 + ?
?2 = √20.25 × 10 + √16 + 32
242 + 80% of 1620 = ? × 16 – 35% of 800
(750 / 15 × 15 + 152 + 20% of 125) = ?3
7/11 × 1034 + 1(4/7) × 2401 = 1230 +?
4(1/3) × 2(11/14) = 50% of ? + 86/11
32% of 4080 + 24% of 455 = x% of 4000
12 × 19 + 13 × 15 + 152 = ?% of 500