Let speed of train is ‘x’ m/s So, length of train = 36 × x = 36x metres And, 36x + 324 = 1.5 × x × 42 Or, 27x = 324 Or, x = 12 m/s So, length of train = 36 × 12 = 432 metres Desired time = (432 + 120)/12 = 46 seconds
I.√(3x-17)+ x=15
II. y+ 135/y=24
I. 22x² - 97x + 105 = 0
II. 35y² - 61y + 24 = 0
I. x2 – 3(x + 5) = -11
II. y2 – 4(y + 2) = -2y
I. p²= ∛1331
II. 2q² - 21q + 55 = 0
I. 96x² + 52x - 63 = 0
II. 77y² + 155y + 72 = 0
I: x² - 10x + 21 = 0
II: 4y² - 16y + 15 = 0
I. 3p² + 13p + 14 = 0
II. 8q² + 26q + 21 = 0
I. p2 - 19p + 88 = 0
II. q2 - 48q + 576 = 0
I. 144x² - 163x - 65 = 0
II. 91y² - 128y -48 = 0
The quadratic equation (p + 1)x 2 - 8(p + 1)x + 8(p + 16) = 0 (where p ≠ -1) has equal roots. find the value of p.