Question
In ∆ABC, AB = 5cm, BC = 6cm and AC = 10cm then find
out the value of cos A?Solution
From Cosine rule, we get BC2 = AB2 + AC2 - 2AB.AC.cos A 36=25+100-2×5×10×Cos A 100CosA=125-36=89 cos A = 89/100 .
If cos1.5B = sin(B + 5°), then find the measure of 'B'.
Find the value of: (Sin2 60 ° X cos 30 ° X sec 60°)/tan 30°
- If sin(A + B) = sinAcosB + cosAsinB, then the value of sin75° is
The value of (3tan10°-tan³10°)/(1-3tan²10°) is equal to
Simplify the following trigonometric expression:
8 cos 40° cosec 50° − 2 cot 30° cot 60°
- In a triangle ABC, if 5∠A = 3∠B = 15∠C, then find the value of cosA + sin(C + 25 ° )
sin2 9 ° + sin2 10 ° + sin2 11 ° + sin2 12 ° + ……… + sin2 81 ° = ?
...- If √3 cosec 2x = 2, then the value of x:
Find the value of the given expression.
2 × (cos 60° – tan 45° + sec 60°)
If √3 tan x = 3, then the value of x: