Question
If 4sin² θ = 3(1+ cos θ), 0° <
θ < 90°, then what is the value of (2tan θ + 4sinθ - secθ)?Solution
4 (1 - cos2 θ) = 3 + 3cos θ ⇒ 4 - 4cos2 θ = 3 + 3cos θ ⇒ 4cos2 θ + 3cos θ - 1 = 0 ⇒ 4cos2 θ + 4cos θ - cos θ - 1 = 0 ⇒ 4cos θ (cos θ + 1) - 1 (cos θ + 1) = 0 ⇒ (4cos θ - 1) (cos θ + 1) = 0 ⇒ cos θ + 1 = 0 ⇒ cos θ = - 1 [Not possible because 0° < θ < 90] ⇒ 4cos θ - 1 = 0 ⇒ cos θ = 1/4 We can get all value by using the image below,
The height will be = √(42 - 12) = √(16 - 1) = √15 So, (2tan θ + 4sin θ - sec θ) = (2 × √15) + (4 × √15/4) - 4 = 2√15 + √15 - 4 = 3√15 - 4
7, 22, 68, 207, 620, 1880
75, 450, 225, 1330, 675, 4050
- Find the wrong number in the given number series.
1, 2, 6, 24, 120, 600 112, 236, 374, 546, 790, 1376
132, 192, 238, 266, 284, 292
324, 385, 460, 549, 651, 769
72, 360, 370, 1850, 1880, 9300
Find the wrong number in the given number series.
88, 110, 148, 198, 275, 396
14, 16, 22, 46, 172, 886
Find the wrong number in the given number series.
32, 48, 72, 108, 162, 245