Question
If sin x + cos x = √2 sin x, then the value of sin x -
cos x is:Solution
sinx + cosx = √2sinx Squaring the equation on both sides, we get. ⇒ sin²x + cos2 x +2sinxcosx = 2sin2 x ⇒ 1 + 2sinx.cosx = 2sin2 x ---- (i) Let sinx - cosx = k ---- (ii) Squaring the equation on both sides, we get. ⇒ 1 - 2sinxcosx = k2 Adding (i) and (ii), we get 2sin2 x + k² = 2 k² = 2(1-sin²x) k² = 2cos2 x k = ± √ (2cos2 x) The value of (sinx – cosx) = ± 2√cosx Alternate- Concept- if (sinx – cosx) =k then (sinx – cosx) =± √(2-k2) Now – k=√2 sin x k2=2sin2x (sinx – cosx) =± √(2-k2) = ± √(2-2sin2x) =± √2 (1-sin2x) = ± √2 cosx.

If sin 2A = cos (3A - 60o) , then find the value of sec 2A.
- If 2 sin x = √3, then the value of x:
- Find the value of sin²33° + sin²57° + cos²48° + cos²42°.
If sec a + tan a = 5/2, find the value of sin a.
If 2 sec 3x = 4, then the value of x:
Find the maximum value of 22 sin A + 16 cos A.
- If cos A = √3/2, then what will be the value of tan² A?