Question
Solution
[cot (90°-θ) sin (180°-θ) sec (360°-θ)]/ [tan (180°+ θ) sec (-θ) cos (90° + θ)] cot (90°- θ) = Using the identity cot (90°- θ) = tan (θ). sin (180°- θ) = Using the identity sin (180° - θ) = sin (θ). sec (360°- θ) = Using the identity sec (360° - θ) = sec (θ). tan (180°+ θ) =Using the identity tan (180°+ θ) = tan (θ). sec (-θ) = Using the identity sec (-θ) = sec (θ). cos (90°+ θ) = Using the identity cos (90°+ θ) = -sin(θ). Now – = [tan (θ) sin(θ) sec(θ)]/[tan(θ) sec(θ) ( -sin(θ)] =sin(θ) /- sin(θ) =-1
? = 650.24 + 1124.97 – 14.992
124% of 620.99 + 11.65% of 1279.23 = ?
What approximate value will come in place of the question mark (?) in the following question? (Note: You are not expected to calculate the exact value.)...
6527.83 - 4891.21 + 7423.46 + ? = 14520.34
20% of 80 × 26% of 65 = ?
185.92 ÷ 5.98 - (4.002)2 + 114.03 of 5.03 ÷ 18.99 of 6.04 = 5.01 of 2.99 + ? ÷ 12.02
What approximate value will come in place of the question mark (?) in the following question? (Note: You are not expected to calculate the exact value.)...
`sqrt623.798` × 24.034 +`sqrt403.898` × 17.907 =?
600.11 ÷ 14.98 x 5.14 – 171.9 = √?