Question
If sin A = 3/5 and cos B = 4/5, where A and B are acute
angles, find the value of sin(A + B).Solution
We are given sin A = 3/5. Using the Pythagorean identity: cos A = √(1 - sin²A) = √(1 - (3/5)²) = √(1 - 9/25) = √(16/25) = 4/5. Similarly, we are given cos B = 4/5. Using the Pythagorean identity: sin B = √(1 - cos²B) = √(1 - (4/5)²) = √(1 - 16/25) = √(9/25) = 3/5. Using the formula for sin(A + B): sin(A + B) = sin A cos B + cos A sin B. sin(A + B) = (3/5)(4/5) + (4/5)(3/5) = 12/25 + 12/25 = 24/25 = 0.96. Correct answer: a) 0.96
74% of 2840 + 80% of 1640 - ?= 47²
85% of 620 + ? % of 1082 = 4855
√0.49 + √6.25 + √1.44 + √1.21 =? % of 125
√49 + √144% of 3600 = ?
√256 × 25 – 15 × 14 =?
216% of 350 + 273 = ?2 × 21
`2(1/3)` + `4(1/4)` + `4(2/3)` + `8(7/6)` + ? = `4(3/5)xx4(1/2)`
...{(522 – 482 ) ÷ (27 + 73)} × 35 = ?% of 17
95% of 830 - ? % of 2770 = 650