Start learning 50% faster. Sign in now
Let the height of the tower be h meters, and the initial distance from the man to the base of the tower be x meters. From the first position: tan 30° = h / x → 1/√3 = h / x x = h√3. From the second position: tan 60° = h / (x - 100) √3 = h / (x - 100). Substitute x = h√3: √3 = h / (h√3 - 100). Cross-multiply: h√3 - 100 = h / √3. 3h - 100√3 = h. 2h = 100√3. h = 50√3. Now, x = h√3 = 50√3 × √3 = 150 m. Answer: b) 150 m
1199.98 ÷ 40.48 × 20.12 = ? × 3.16
85% of 1740 + 30² = ? + 1575 ÷ 15
12.023 + 32.05 × 16.08 – 84.04% of 2400 = 56.06% of ?
386.99 + 397.99 + ? - 232.02 = 35.02 × 31.99
15.2 x 1.5 + 258.88+ ? = 398.12 + 15.9
(√899.69 + 49.83% of 640.24)² - (7/8 of 479.79) = ?
√440.98 + (17.95% of 249.96 – 12% of 99.99) + (7.12)2 = ?
25.05% of 220.05 – 10.15% of 119.99 × 2.02 = ?
?2 = 159.97% of 65.004 + 319.98 ÷ 15.99 - 24