Given statements: A ≤ J ≤ K = M; Y ≥ Z>A On combining the given statements: Y ≥ Z > A ≤ J ≤ K = M Conclusions: I. J ≤ Z → False (as Z > A ≤ J) → thus relation between J and Z cannot be determined. II. Z ˃ Y → False (as Y ≥ Z). Hence, neither conclusion I nor II is true.
Statement: C ≤ D < E; C > F > G
Conclusions: I. F < E II. C > G
...Statements: R < Y ≤ G = S ≥ T; L ≥ O = S < W ≤ U
Conclusions:
I. R < W
II. T ≤ L
Statements: P < Q = R ≥ S = T; R < U; R = W
Conclusion: I. W ≥ T II. U < P
...Statements: D > E ≥ F ≥ G; H < I = G > J
Conclusions: I. J > EÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. G < D
...Statements: P % Q, Q & R, R @ S, S # T
Conclusions: I. T & RÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. P # S
...Statements: B & A, A # O, O $ Z, Z @ S
Conclusions:
I. Z $ A
II. Z & A
Statements: P ≥ Q ≥ R = S, Q ≥ T > U ≥ V
Conclusion:
I. P ≥ V
II. P > V
Statements:Â A @ D % J #Â K & L $ UÂ # O; V $ J # K
Conclusions :Â Â Â Â Â Â Â Â Â I. O @ JÂ Â Â Â Â Â Â Â Â Â Â Â Â Â Â Â II. U # VÂ Â Â Â ...
Statements: Â R % U, U # V, VÂ @ C, CÂ * Â F
Conclusions :
I. F $ V
II. C % U
III. Â R % F
IV. U...
Statement: C ≥ D > E ≥ H; I < E ≤ F < G
Conclusions: I. H > D II. G < H
...