Statements: Z > X = A ≥ V > W > B; B = Y ≥ U = E > T
Conclusions:
I. Z > U
II. Y > Z
Z > X = A ≥ V > W > B = Y ≥ U = E > T Z > U. Hence conclusion I is true. Z > X = A ≥ V > W > B = Y ≥ U = E > T Z > Y. Hence conclusion II is not true.
I. 2x2 – 5x - 12 = 0
II. y2 – 11y + 30 = 0
I. 4x² - 15x + 9 = 0
II. 20y² - 23y + 6 = 0
I. (y – 5)2 – 9 = 0
II. x2 – 3x + 2 = 0
I. 2y² - 11 y + 15 = 0
II. 2x² + 3x – 14 = 0
I. 63x² + 146x + 80 = 0
II. 42y² + 109y + 70 = 0
I. 8x² - 74x + 165 = 0
II. 15y² - 38y + 24 = 0
I. 2y2– 19y + 35 = 0
II. 4x2– 16x + 15 = 0
I. x ² + 5 x + 6 = 0
II. y²+ 7 y + 12= 0
...I. p2+ 2p – 8 = 0 II. q2 – 5q + 6 = 0
I. y/16 = 4/y
II. x3= (2 ÷ 50) × (2500 ÷ 50) × 42× (192 ÷ 12)