(4, 24 & 48) = (4, 4×6, 4×6×2) Same pattern is in option (2, 12, 24) = (2, 2×6, 2×6×2)
I. x2 – 13x + 36 = 0
II. 3y2 – 29y + 18 = 0
I. 2 x ² + x – 1 = 0
II. 2 y ² - 3 y + 1 = 0
...l. p2 - 3p - 54 = 0
II. q2 - 19q + 90 = 0
I. 2(x+2)+ 2(-x)=5
II. (1/(y+1)+ 1/(y+5))=(1/(y+2)+ 1/(y+4))
I. x2 + 13x + 42 = 0
II. y² + 13y + 40 = 0
I. 14p2 – 135p + 81 = 0
II. 7q2 – 65q + 18 = 0
I. 2x2– 25x + 33 = 0
II. 3y2+ 40y + 48 = 0
I. 6x² + 77x + 121 = 0
II. y² + 9y - 22 = 0
I. 4x2+ 25x + 36 =0
II. 2y2+ 5y + 3 = 0
Solve the quadratic equations and determine the relation between x and y:
Equation 1: x² - 34x + 288 = 0
Equation 2: y² - 29y + 210 = 0