Question
If Leonardo exchanges his position with Johnny, then
what Leonardo having? Study the following information carefully and answer the questions given below. There are six persons, namely Leonardo, Johnny, Sylvester, Brad, Tom and Arnold. Among them two are having Aston Martin, while others are having Bugatti, Ferrari, Regera, and Lamborghini not necessarily in the same order. Also, each of these people went to different islands to enjoy their vacations, namely Santorini, Maui, Bali, Hawaii, Sumatra, and Ko Tao. (i) Sylvester, having Ferrari, neither went to Hawaii nor Ko Tao. (ii) The one who went to Sumatra is having Lamborghini. Neither Brad nor Leonardo went to Sumatra. (iii) Leonardo is having Regera and he went to Ko Tao. (iv) Sylvester does not went to Bali while Arnold does not went to Hawaii. (v) Bradhaving Bugattiwent to Maui. Neither Johnny nor Arnold is not having Lamborghini.Solution
According to the data given in the question the arrangement is shown below: Since From (v), Neither Johnny nor Arnold is having Lamborghini. So, the only person left who could have Lamborghini is Tom. Therefore, Tom is having Lamborghini. Since From (ii), person who went to Sumatra is having Lamborghini. Therefore, Tom is having Lamborghini and went to Sumatra.
Since From (i), Sylvester is neither went to Hawaii or Ko Tao and also from (iv) Sylvester does not went to Bali. Therefore, the only Island left for Sylvester is Santorini. From (iv), Arnolddo not went to Hawaii. Therefore, only Island left for Arnold is Bali.
Now, only person left is Johnny and the only Island left is Hawaii. Therefore, Johnny went to Hawaii. The only car left for Johnny and Arnold is Aston Martin. Therefore, Johnny and Arnold are havingAston Martin.
How many numbers between 100 and 500 are divisible by both 4 and 6?
Find the greatest number that will divide 49, 147 and 322 to leave the same remainder in each case.
Find the remainder obtained by dividing 961125 by 37.
A six-digit number 11p9q4 is divisible by 24. Then the greatest possible value for (p + q) is
Find the smallest 4-digit number which when divided by 10, 15, 20, 25, 30 leaves remainder 9.
What is the smallest perfect square that is divisible by each of 42, 48 and 60?
which of the following pairs of non-zeroes values of p and q make the 6-digit number 674pq0 divisible by both 3 and 11?
What is the value of (2² + 3²) × (4³ + 5³) ÷ (6⁴)?
Which of the following pairs of non-zero values of p and q make 6-digit number 674pq0 divisible by both 3 and 11?
A six-digit number 23p7q6 is divisible by 24. Then the greatest possible value for (p + q) is: