Question
Statements: H ≤ L< S ≤ K , S = G ≥ I > Q,
U ≤ B < N = C = I Conclusions: I. B < S II. H < QSolution
Combining the equations to find the relationship between B and S, we get S = G ≥ I = C = N > B Clearly, the common sign of inequalities between S and B is of '>'. Conclusion S > B or B < S is hence stays true. C1, hence, follows. Similarly, combining equations to find the relationship between H and Q, we get H ≤ L< S = G ≥ I > Q Clearly, there are opposite signs between H and Q , hence we can't define a relationship between them. C2, hence, doesn't follow.
Calculate the value of 'a' if 'P' initially had Rs. 'a' and invested 45% of this amount in a PF A with a simple interest rate of 35% per annum and the r...
If a sum of money invested on simple interest becomes 4 times of itself at 'R%' p.a. in 6 years, then find the value of '0.4R'.
A sum of money invested at simple interest grows to 13 times its original value in 96 years. Determine the annual rate of interest.
- An amount becomes Rs. 11,520 after 3 years at a simple interest rate of r% p.a. If the rate had been increased to (r + 5)% per annum, the same sum would be...
The interest earned on investing Rs. 1000 for 2 years at the rate of 20% p.a., compounded annually, is used to purchase an article. If the article is la...
Rs. 95Y invested for 2 years at simple interest of 16% p.a., yields an interest of Rs. 3040. If Rs. 115Y is invested for 2 years at compound interest (c...
A man invested a certain amount of sum at 12.5% per annum simple interest and earned an interest of Rs.2400 after 4 years. If the same amount is investe...
A man invested certain sum at simple interest of r% p.a. such that it amounts to 110% of itself in 4 years. Find the interest earned when Rs. 3400 is in...
- A sum of Rs. 1,500 is invested at a simple interest rate of 10% per annum for 18 months. If the interest earned is Rs. 'q', find the value of (q - 15).
The interest earned when a sum is invested at simple interest of 20% p.a., for 3 years, is Rs. 1500. What will be the total amount received after 2 year...