Question
Conclusions: Some Circles are Triangles. Some Squares
being Circles is a possibility. All Triangles are Circles. In each of these questions, two Conclusions have been given followed by 5 sets of possible Statements. You have to take the given Conclusions to be true even if they seem to be at variance with the commonly known facts and then decide that the Conclusions logically follows for which of the given statements disregarding commonly known facts.Solution
1) All Triangles are Cubes (A) + All Cubes are Circles (A) → All Triangles are Circles (A) → Conversion → Some Circles are Triangles (I). Hence conclusion I and III follow. Some Cuboids are Circles (I) → Conversion → Some Circles are Cuboids (I) + Some Cuboids are Squares (I) → Probable conclusion → Some Squares may be Circles (I). Hence conclusion II follows. Hence option 1 is correct. 2) All Triangles are Cubes (A) + All Cubes are Circles (A) → All Triangles are Circles (A) → Conversion → Some Circles are Triangles (I). Hence conclusion I and III follow. Some Cuboids are Squares (I) → Conversion → Some Squares are Cuboids (I) + All Cuboids are Circles (A) → Some Squares are Circles (I). Hence conclusion II does not follow. Hence option 2 is not correct. 3) Some Triangles are Cubes (I) + Some Cubes are Circles (I) → No conclusion. Hence neither conclusion I nor III follow. Some Cuboids are Squares (I) → Conversion → Some Squares are Cuboids (I) + All Cuboids are Circles (A) → Some Squares are Circles (I). Hence conclusion II does not follow. Hence option 3 is not correct. 4) No Triangle is a Cube (E) + No Cube is a Circle (E) → No conclusion. Hence neither conclusion I nor III follow. Some Cuboids are Squares (I) → Conversion → Some Squares are Cuboids (I) + All Cuboids are Circles (A) → Some Squares are Circles (I). Hence conclusion II does not follow. Hence option 4 is not correct.
рдирд┐рдореНрдирд▓рд┐рдЦрд┐рдд рдореЗрдВ рд╕реЗ рдХреМрди-рд╕рд╛ рд╢рдмреНрдж 'рд╣рд╡рд╛' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ?
'рд╕реБрдмрд╣ рд╣реБрдИ рдФрд░ рдЪрд┐рдбрд┐рдпрд╛ рдЙрдб рдЧрдИ'ред рдпрд╣ рдХрд┐рд╕ рддрд░рд╣ рдХрд╛ рд╡рд╛рдХреНрдп рд╣реИ ?
рджрд┐рдП рдЧрдП рд╡рд╛рдХреНрдпреЛрдВ рдореЗрдВ рдПрдХ рд╡рд╛рдХреНрдп рд╢реБрджреНрдз рд╣реИ рдФрд░ рддреАрди рдЕрд╢реБрджреНрдз рд╣реИрдВя┐╜...
'рдХрдорд▓' рдХрд╛ рдкрд░реНрдпрд╛рдпрд╡рд╛рдЪреА рдирд╣реАрдВ рд╣реИ-
'рдЙрдЬреНрдЬреНрд╡рд▓' рдХреА рд╕рд╣реА рд╡рд░реНрддрдиреА рдХрд╛ рдЪрдпрди рдХреАрдЬрд┐рдП-
тАШ рд╣рдо рджреЛрдиреЛрдВ рд╢рд╛рдиреНрддрд┐ рдкреВрд░реНрд╡рдХ рдкреЭрддреЗ рд░рд╣рддреЗ рд╣реИредтАШ рдЗрд╕ рд╡рд╛рдХреНрдп рдореЗрдВ тАШрдкреВрд░реН...
рдлрд┐рдЬреА рдореЗрдВ рд╣реЛрдиреЗ рд╡рд╛рд▓рд╛ рд╡рд┐рд╢реНрд╡ рд╣рд┐рдВрджреА рд╕рдореНрдореЗрд▓рди рдХреМрди рд╕реЗ рдирдВрдмрд░ рдХрд╛ рдЖрдпреЛрдЬ...
'рдкрдВрдЪрд╡рдЯреА' рдореЗрдВ рд╕рдорд╛рд╕ рд╣реИ-
'рдПрдХ рдЖрдБрдЦ рд╕реЗ рджреЗрдЦрдирд╛' рдореБрд╣рд╛рд╡рд░реЗ рдХрд╛ рд╕рд╣реА рдЕрд░реНрде рд╣реИ
рднреЛрдЬрдкреБрд░реА, рдордЧрд╣реА, рдореИрдерд┐рд▓реА рдХрд┐рд╕ рдЙрдкрднрд╛рд╖рд╛ рдХреА рдмреЛрд▓рд┐рдпрд╛рдБ рд╣реИрдВ?